Menu English Ukrainian Tiếng Nga Trang Chủ

Thư viện kỹ thuật miễn phí cho những người có sở thích và chuyên gia Thư viện kỹ thuật miễn phí


ENCYCLOPEDIA VỀ ĐIỆN TỬ TRUYỀN THANH VÀ KỸ THUẬT ĐIỆN
Thư viện miễn phí / Sơ đồ của các thiết bị vô tuyến-điện tử và điện

Tự động bảo vệ các thiết bị điện chống lại sự đột biến điện. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

Thư viện kỹ thuật miễn phí

Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện / Bảo vệ thiết bị khỏi hoạt động khẩn cấp của mạng, nguồn điện liên tục

Bình luận bài viết Bình luận bài viết

Предлагаемый аппарат отключает нагрузку от сети, если сетевое напряжение выйдет из заданного диапазона.

Автомат разрабатывался как составная часть устройства управления вибрационным насосом. Однако нагрузкой устройства может быть любое электрическое устройство.

Аналогичные устройства описаны в литературе [1, 2, 3]. Данный автомат по всем параметрам, за исключением количества используемых деталей, не уступает вышеуказанным, а по большинству превосходит. Автомат обладает следующими возможностями и особенностями. Раздельная регулировка верхнего и нижнего порогов напряжения (в пределах 170-260 В). Гальваническая развязка управляющей части схемы от сети; это позволяет применить описываемое устройство для контроля за сетью с напряжением 380 В и выше.

Индикация состояния устройства с помощью светодиода с управляемым цветом свечения. Устройство отключает нагрузку после первого полупериода сетевого напряжения, выходящего из заданного диапазона. Регулируемая задержка перед включением устройства, причем время отсчитывается не с момента отключения нагрузки, а от последнего "забракованного" полупериода сетевого напряжения (напряжение контролируется и во время задержки). Автомат имеет открытую архитектуру, поэтому его легко интегрировать в другие устройства. К недостаткам можно отнести нерациональное использование вентилей логических микросхем.

Автомат работает совместно с насосом "Струмок" производства ОАО "Электромашина" (г. Харьков). При снижении напряжения ниже 205 В у насоса резко падает подача воды, вследствие чего он слабо охлаждается и может сгореть. При превышении напряжением 235 В вибрации насоса принимают ненормальный характер и издаваемый шум увеличивается примерно в два раза.

Схема автомата защиты показана на рис.1.

Tự động bảo vệ các thiết bị điện chống lại sự gia tăng điện áp nguồn
(bấm vào để phóng to)

Входная часть гальванически разделена от измерительной схемы с помощью транзисторного оптрона VE1. Сетевое напряжение ограничивается резистором R1 и создает импульсы тока через светодиод оптрона VE1. Диодный мост VD1 позволяет пропускать через светодиод оптрона каждую половину сетевого напряжения в прямом направлении. В точке А напряжение имеет форму, приведенную на рис.2,а. Резистор R3 ограничивает ток через транзистор оптопары на допустимом уровне. Если напряжение сети в норме, то на входах логических элементов (ЛЭ) DD1.1 и DD1.2 - низкие логические уровни и соответственно на выходе DD1.3 - уровень лог. "0".

Tự động bảo vệ các thiết bị điện chống lại sự gia tăng điện áp nguồn

Рассмотрим работу канала, реагирующего на понижение сетевого напряжения. Канал собран на элементах DA1.1, R6, VD2, R8, C1. Пока напряжение сети достаточно велико, напряжение в точке А в каждом полупериоде сетевого напря- жения снижается ниже уровня напряжения, установленного на инвертирующем входе DA1.1 с помощью подстроечного резистора R4. Оба вентиля микросхемы DA1 включены как компараторы напряжения. Конденсаторы частотной коррекции можно не использовать. В каждом полупериоде на выходе DA1.1 появляются импульсы отрицательного напряжения (см. рис.2,б), которые через цепочку R6,VD2 разряжают конденсатор С1 практически до нуля. Затем, до появления в следующем полупериоде сетевого напряжения нового импульса, конденсатор С1 заряжается через резистор R8.

Номинал R8 выбран так, чтобы за время полупериода сетевого напряжения, равного 10 мс, напряжение на С1 приближалось к порогу переключения триггера DD1.1, но не превышало его (см. рис.2,в). Резистор R6 ограничивает выходной ток операционного усилителя. Диод VD2 препятствует заряду конденсатора выходным током ОУ, когда на его выходе лог. "1".

Итак, если сетевое напряжение не опускается ниже уровня, задаваемого резистором R4,то на входе инвертора DD1.1 напряжение соответствует уровню лог. "0", а следовательно, на выходе будет уровень лог. "1". Если напряжение в сети снизится ниже допустимого уровня, то сигнал в точке А не понизится ниже заданного резистором R4 напряжения, на выходе ОУ DA1.1 не сформируется отрицательный импульс, в результате конденсатор С1 зарядится до напряжения, достаточного для переключения триггера DD1.1 (рис.2,б,в). Причем это переключение произойдет до окончания текущего "бракованного" полупериода сетевого напряжения. Первый следующий "нормальный" полупериод сетевого напряжения вернет этот узел к исходному состоянию, так как через резистор сопротивлением 270 Ом конденсатор С1 разряжается практически мгновенно по сравнению с частотой сети.

Канал, реагирующий на превышение сетевым напряжением, установленного подстроечным резистором R5, уровня, собран на элементах DA1.2, R7, VD3, C2, R9. Пока напряжение в сети не превышает заданного уровня, сигнал в точке А не опускается ниже уровня, заданного резистором R5 на неинвертирующем входе ОУ DA1.2 (рис.2,а). Так как напряжение на инвертирующем входе DA1.2 больше, чем на неинвертирующем, то на выходе будет лог. "0" (рис.2,е).

Конденсатор С2 полностью заряжен. На входе инвертора DD1.2 - лог. "0", а на выходе - лог."1". Для этого канала стояла задача, чтобы в период времени, когда сетевое напряжение выше нормы, получить постоянный сигнал, который необходим для нормальной работы светодиода индикации. Как только сетевое напряжение превысит заданный уровень, на выходе компаратора DA1.2 сформируется положительный импульс. Конденсатор С2 разрядится через цепочку R7, VD3 (рис.2,д,е). На входе инвертора DD1.2 появится лог. "1", а на его выходе лог. "0", что соответствует увеличению сетевого напряжения выше порога. До появления следующего положительного импульса на выходе компаратора DA1.2 конденсатор С2 будет заряжаться через резистор R9. Номинал резистора R9 выбран так, чтобы напряжение на входе триггера DD1.2 не снизилось ниже уровня, соответствующего лог. "1", за время 10 мс, т.е. до очередного полупериода сети (рис.2,д). Таким образом, если подряд несколько полупериодов сетевого напряжения превысят заданный уровень, то на выходе DD1.2 будет постоянный уровень лог. "0".

При включении устройства конденсатор С4 заряжается не мгновенно. Благодаря этому на выходе DD6.3 формируется положительный импульс, устанавливающий триггер DD4.1 и счетчик DD7 в исходное нулевое состояние.

Генератор, собранный на ЛЭ DD6.2, DD6.4, начинает работать сразу после включения устройства в сеть и работает постоянно. Пока сетевое напряжение в норме, триггер DD4.1 остается в нулевом состоянии. На обоих входах DD5.1 лог. "0", на его выходе также лог. "0". В результате на входе R счетчика DD7 сохраняется уровень лог."1", и счетчик не реагирует на импульсную последовательность на входе С. Уровень лог. "1" с выхода DD1.4 поступает на базу транзистора VT3, и на нагрузку подается сетевое напряжение. Логика работы автомата приведена в таблице состояний элементов DD5.1, DD6.1 (см. табл.1).

Bảng 1
Tự động bảo vệ các thiết bị điện chống lại sự gia tăng điện áp nguồn

При появлении на выходе одного из элементов DD1.1, DD1.2 лог. "0", на выходе DD1.3 появится лог. "1" (рис.2,г), которая перебросит триггер DD4.1 в единичное состояние. При этом транзистор VT3 закроется.

До конца текущего полупериода сетевого напряжения в нагрузке еще будет ток, но в следующем полупериоде симистор VS1 уже не откроется. Триггер DD4.1 запоминает состояние автомата. Счетчик DD7 формирует задержку до включения нагрузки в сеть. Пока сетевое напряжение не войдет в норму на обоих входах DD5.1 будут лог. "1", в результате счетчик DD7 по-прежнему не будет считать импульсы генератора.

Когда напряжение сети вернется к норме, на входе S триггера DD4.1 появится лог. "0". Теперь на входах DD5.1 будут разные логические уровни, и счетчик DD7 начнет подсчитывать импульсы генератора (см. таблицу). Если в это время снова произойдет скачок напряжения сети, то это вызовет положительный импульс на входе R DD7, возвращающий счетчик в нулевое состояние.

Элементы С3, R2 задают частоту генератора около 1 Гц. Время задержки перед включением нагрузки можно регулировать, выбирая один из выходов счетчика DD7. Если выбран выход Q5, то задержка составляет 32 с. Другие выходы соответственно уменьшают или увеличивают это значение в кратное числу 2 раза. После поступления на вход С DD7 32-го отрицательного перепада напряжения на его выходе Q5 появится высокий логический уровень. Через DD3.1 этот уровень попадет на вход R триггера DD4.1 и установит его в нулевое состояние. После этого откроется транзистор VT3, и на нагрузку поступит сетевое напряжение.

С помощью светоизлучающего диода с управляемым цветом свечения индицируются три состояния автомата защиты. Когда автомат находится в состоянии задержки перед включением, светодиод имеет оранжевый цвет, так как светят оба перехода. При этом на всех четырех входах ЛЭ DD2.1, DD2.2 присутствует высокий логический уровень.

Когда напряжение сети становится ниже или выше допустимого уровня, на входе 8 DD2.1 или 12 DD2.2 соответственно появляется уровень лог. "0", и один из кристаллов перестает светиться. Причем если напряжение ниже нормы, то гаснет красный светодиод и мы имеем зеленый цвет свечения. Если напряжение высокое, то HL1 светит красным цветом. Когда напряжение сети в норме и нагрузка подключена к сети, HL1 не светит, так как на входах 9 DD2.1, 13 DD2.2 - уровень лог. "0". В устройстве применен импортный светодиод диаметром 10 мм с линзой молочного цвета. Подавляющее большинство импортных светодиодов с диаметром линзы 8 мм и более имеют максимальный постоянный ток через один переход 30 мА. В описываемом автомате токи переходов ограничены на уровне 20 мА резисторами R11 и R12. Транзисторы VT1, VT2 являются усилителями выходных токов ЛЭ DD2.1, DD2.2.

Коммутация нагрузки в сети 220 В осуществляется симистором VS1. Для гальванической развязки от сети применены тиристорные оптопары VE2, VE3. Когда нагрузка подключена к сети, на выходе ЛЭ DD1.4 появляется высокий логический уровень. Выходной ток DD1.4 ограничивается резистором R14 и усиливается транзистором VT3 до 27 мА. Когда через светодиоды оптронов протекает достаточный ток, фототиристоры открываются в начале каждого полупериода сетевого напряжения. В начале каждого полупериода возрастающее напряжение сети вызывает ток через цепочку: контакт 8, диодный мост VD4, фототиристоры оптопар VE2, VE3, диодный мост VD4, R18, управляющий переход симистора VS1. Последнее вызывает открывание VS1, в результате ток продолжает возрастать в нагрузке и протекает через открытый симистор VS1. В следующем полупериоде сети симистор VS1 открывается импульсом противоположной полярности, однако через фототиристоры ток протекает по-прежнему в прямом направлении, благодаря диодному мосту VD4.

Резисторы R16, R17 выравнивают напряжения на закрытых фототиристорах. Это необходимо делать потому, что токи утечки различных оптронов могут различаться в несколько раз. Когда нагрузка отключена от сети, на закрытых фототиристорах напряжение перераспределяется так, что на одном - напряжение 250 В, а на другом 89 В (при действующем напряжении сети 240 В амплитудное значение равно 240х2 = 339 В), в то время как для данного типа оптрона предельное выходное прямое напряжение в закрытом состоянии составляет 200 В. Из-за этого также приходится применять два оптрона. Номинал резисторов R16, R17 следует выбирать так, чтобы ток через резисторы был примерно в 10 раз больше тока через закрытые фототиристоры (ток утечки АОУ103В составляет 0,1 мА).

Резистор R18 ограничивает ток через VE2, VE3 и управляющий электрод симистора. Это необходимо потому, что симистор VS1 открывается только при определенном напряжении между анодом и катодом, при котором ток, проходящий через оптроны VE2, VE3 и управляющий переход VS1, может возрасти выше допустимого. Резистор R19 обеспечивает гальваническую связь между управляющим электродом и катодом симистора, что повышает устойчивость работы симистора, когда он закрыт (особенно при повышенной температуре). При использовании симистора ТС106-10 мощность нагрузки не должна превышать 2,2 кВт.

Другой вариант гальванически развязанного коммутатора нагрузки в сети 220 В можно выполнить на основе оптотиристорного модуля VS2 (см. рис.1 в РЭ10). Когда через светодиоды модуля течет ток, каждый полупериод сетевого напряжения проходит через нагрузку и тот фототиристор, который оказывается подключенным в прямом направлении. По соотношению цена/качество оба варианта коммутирующих узлов одинаковы, но если учесть время на изготовление, то второй вариант значительно выигрывает. Модули МТОТО80 выпускают на токи 60 А и выше, поэтому коммутируемые мощности могут быть очень большими. Размер модуля 92х20х30 мм. При нагрузке до 1 кВт без радиатора модуль перегревается лишь на 5°С относительно температуры окружающей среды.

В последнее время для коммутации нагрузки используют импульсное управление симистором. Это снижает энергопотребление устройства. Такие технические решения неоправданно усложняют схему, так как экономия электроэнергии составляет менее 0,5 % при нагрузке 100 Вт (самый плохой симистор потребляет по цепи управления менее 0,5 Вт). С ростом нагрузки экономия электроэнергии снижается еще больше. Перед применением описываемого автомата, а также аналогичных устройств из [1-3] рекомендую ознакомиться со статьей в [4].

Описываемый автомат защиты можно использовать для контроля за сетью напряжением 380 В и выше. Для этого следует выбрать модуль МТОТО80 на необходимое напряжение и ток и подобрать сопротивление резистора R1.

Для питания автомата защиты необходим стабилизированный источник напряжения 9 В при токе до 100 мА. Можно применить источник на основе микросхемного стабилизатора КР142ЕН8А(Г) в стандартном его включении [5].

Питание подводится к контактным площадкам 10, 11 на печатной плате.

Детали. В описываемом автомате применены постоянные резисторы общего назначения типа МЛТ, С2-23, С2-33. Подстроечные резисторы R4, R5 типа СП5-14, СП5-22. Конденсаторы С1, С2 типа К73-17 на напряжение 63 В или больше, С3, С4 типа К10-17в или другие керамические подходящего размера. Микросхемы можно применять из серий К176, К561, КР1561. Транзистор КТ315 с буквенными индексами Б, Г, Е. Оптрон АОТ128 с любым буквенным индексом. Диоды VD2, VD3 типов КД522, КД521 с любым буквенным индексом.

Конструкция устройства. Устройство собрано на печатной плате из двустороннего стеклотекстолита. На рис.3-5 показаны соответственно расположение элементов на печатной плате, проводники на верхней и нижней сторонах печатной платы.

Tự động bảo vệ các thiết bị điện chống lại sự gia tăng điện áp nguồn

Tự động bảo vệ các thiết bị điện chống lại sự gia tăng điện áp nguồn

Tự động bảo vệ các thiết bị điện chống lại sự gia tăng điện áp nguồn

Размер платы 85х85 мм, имеется 4 отверстия диаметром 2,8 мм для крепления платы. Силовые элементы VS1 или VS2 устанавливают вне платы. К схеме их подключают через контактные площадки 1, 8, 9 (VS1) или 6, 7 (VS2). При изготовлении печатной платы можно применять односторонний стеклотекстолит, при этом соединения из верхнего слоя платы заменяют гибким монтажным проводом, например, МГТФ. При разработке печатной платы количество проводников на верхнем слое минимизировалось. Между элементами, работающими под напряжением сети, и низковольтными элементами на печатной плате сделан предохранительный зазор, выдерживающий напряжение до 500 В.

Настройка. Для настройки автомата защиты необходимы лабораторный автотрансформатор (ЛАТР) и вольтметр переменного тока. Перед настройкой движок переменного резистора R4 устанавливают в верхнее по схеме положение, а движок резистора R5 в нижнее. Автомат вместе с нагрузкой подключают к выходу ЛАТРа. В качестве нагрузки не обязательно применять мощное устройство - это может быть лампа на 100 Вт. На выходе ЛАТРа устанавливают напряжение, соответствующее верхнему пределу напряжения. Затем, вращая движок резистора R5, добиваются того, чтобы нагрузка отключилась. После этого, изменяя "напряжение сети" ЛАТРом, проверяют правильность регулировки. Нижнее предельное напряжение регулируют аналогичным образом.

Văn chương:

  1. Нечаев И. Автомат защиты сетевой аппаратуры от "скачков" напряжения// Радио. -1996. -№10. -С.48 - 49.
  2. Устройство защиты радиоаппаратуры от превышения сетевого напряжения// Радио. -1997. -№ 6. -С.44 - 45.
  3. Зеленин А. Полуавтомат защиты радиоаппаратуры от "перепадов" напряжения сети// Радио. 1998. -№10. -С.73 - 74.
  4. Кветковский В. Устройство защиты радиоаппаратуры от превышения сетевого напряжения// Радио. -1999. -№10. -С.39.
  5. Щербина А., Благий С. Микросхемные стабилизаторы серий 142, К142, КР142// Радио. -1990. -№ 8. -С.89 - 90.

Автор: А. А. Руденко

Xem các bài viết khác razdela Bảo vệ thiết bị khỏi hoạt động khẩn cấp của mạng, nguồn điện liên tục.

Đọc và viết hữu ích bình luận về bài viết này.

<< Quay lại

Tin tức khoa học công nghệ, điện tử mới nhất:

Da nhân tạo để mô phỏng cảm ứng 15.04.2024

Trong thế giới công nghệ hiện đại, nơi khoảng cách ngày càng trở nên phổ biến, việc duy trì sự kết nối và cảm giác gần gũi là điều quan trọng. Những phát triển gần đây về da nhân tạo của các nhà khoa học Đức từ Đại học Saarland đại diện cho một kỷ nguyên mới trong tương tác ảo. Các nhà nghiên cứu Đức từ Đại học Saarland đã phát triển những tấm màng siêu mỏng có thể truyền cảm giác chạm vào từ xa. Công nghệ tiên tiến này mang đến những cơ hội mới cho giao tiếp ảo, đặc biệt đối với những người đang ở xa người thân. Các màng siêu mỏng do các nhà nghiên cứu phát triển, chỉ dày 50 micromet, có thể được tích hợp vào vật liệu dệt và được mặc như lớp da thứ hai. Những tấm phim này hoạt động như những cảm biến nhận biết tín hiệu xúc giác từ bố hoặc mẹ và đóng vai trò là cơ cấu truyền động truyền những chuyển động này đến em bé. Việc cha mẹ chạm vào vải sẽ kích hoạt các cảm biến phản ứng với áp lực và làm biến dạng màng siêu mỏng. Cái này ... >>

Cát vệ sinh cho mèo Petgugu Global 15.04.2024

Chăm sóc thú cưng thường có thể là một thách thức, đặc biệt là khi bạn phải giữ nhà cửa sạch sẽ. Một giải pháp thú vị mới từ công ty khởi nghiệp Petgugu Global đã được trình bày, giải pháp này sẽ giúp cuộc sống của những người nuôi mèo trở nên dễ dàng hơn và giúp họ giữ cho ngôi nhà của mình hoàn toàn sạch sẽ và ngăn nắp. Startup Petgugu Global đã trình làng một loại bồn cầu độc đáo dành cho mèo có thể tự động xả phân, giữ cho ngôi nhà của bạn luôn sạch sẽ và trong lành. Thiết bị cải tiến này được trang bị nhiều cảm biến thông minh khác nhau để theo dõi hoạt động đi vệ sinh của thú cưng và kích hoạt để tự động làm sạch sau khi sử dụng. Thiết bị kết nối với hệ thống thoát nước và đảm bảo loại bỏ chất thải hiệu quả mà không cần sự can thiệp của chủ sở hữu. Ngoài ra, bồn cầu có dung lượng lưu trữ lớn có thể xả nước, lý tưởng cho các hộ gia đình có nhiều mèo. Bát vệ sinh cho mèo Petgugu được thiết kế để sử dụng với chất độn chuồng hòa tan trong nước và cung cấp nhiều lựa chọn bổ sung. ... >>

Sự hấp dẫn của những người đàn ông biết quan tâm 14.04.2024

Định kiến ​​phụ nữ thích “trai hư” đã phổ biến từ lâu. Tuy nhiên, nghiên cứu gần đây được thực hiện bởi các nhà khoa học Anh từ Đại học Monash đã đưa ra một góc nhìn mới về vấn đề này. Họ xem xét cách phụ nữ phản ứng trước trách nhiệm tinh thần và sự sẵn sàng giúp đỡ người khác của nam giới. Những phát hiện của nghiên cứu có thể thay đổi sự hiểu biết của chúng ta về điều gì khiến đàn ông hấp dẫn phụ nữ. Một nghiên cứu được thực hiện bởi các nhà khoa học từ Đại học Monash dẫn đến những phát hiện mới về sức hấp dẫn của đàn ông đối với phụ nữ. Trong thí nghiệm, phụ nữ được cho xem những bức ảnh của đàn ông với những câu chuyện ngắn gọn về hành vi của họ trong nhiều tình huống khác nhau, bao gồm cả phản ứng của họ khi gặp một người đàn ông vô gia cư. Một số người đàn ông phớt lờ người đàn ông vô gia cư, trong khi những người khác giúp đỡ anh ta, chẳng hạn như mua đồ ăn cho anh ta. Một nghiên cứu cho thấy những người đàn ông thể hiện sự đồng cảm và tử tế sẽ hấp dẫn phụ nữ hơn so với những người đàn ông thể hiện sự đồng cảm và tử tế. ... >>

Tin tức ngẫu nhiên từ Kho lưu trữ

Transistor thay thế toàn bộ mạch logic 26.12.2021

Các nhà khoa học đã thực hiện một bước theo hướng thú vị trong việc sản xuất chất bán dẫn - họ đã phát triển một bóng bán dẫn có thể lập trình động, một mình nó có thể thực hiện logic nhiều thành phần như NOR, NAND và những loại khác. Bóng bán dẫn được đề xuất dễ dàng phù hợp với cơ sở hạ tầng sản xuất hiện có và không sử dụng các vật liệu lạ. Một lợi ích đặc biệt từ việc sử dụng nó được mong đợi trong lĩnh vực trí tuệ nhân tạo.

Một bóng bán dẫn thông thường bao gồm hai điện cực cho kênh mang dòng điện và một điện cực khác để điều khiển kênh (cổng). Kiểm soát cổng cho phép dòng điện đi qua bóng bán dẫn hoặc tắt nó. Hầu hết tất cả các thiết bị điện tử kỹ thuật số hiện đại đều dựa trên nguyên tắc này. Các nhà nghiên cứu từ Đại học Kỹ thuật Vienna (TU Wien) đề xuất thêm hai điện cực bổ sung vào cấu trúc bóng bán dẫn và kết nối chúng bằng sợi germanium (Ge) tinh khiết mỏng nhất. Và nó đã mang lại thành công.

Do đặc tính điện tử của nó, gecmani thể hiện hiệu ứng điện trở chênh lệch âm. Điều này có nghĩa là khi điện áp tăng lên trong một khu vực nhất định, dòng điện ngừng tăng và hình thành sự sụt giảm. Chúng ta càng áp dụng nhiều điện áp trên một đoạn của đặc tính dòng-điện áp như vậy, thì dòng điện càng ít, cũng có thể được sử dụng để chuyển đổi thiết bị (tín hiệu).

Mối nối kim loại-germani bổ sung này (nhôm được sử dụng làm điện cực kim loại) giúp bóng bán dẫn có thể lập trình cho bóng bán dẫn cho các điện áp chuyển đổi ngưỡng nhất định. Chúng tôi nhấn mạnh rằng ngưỡng này có thể được đặt động ở một mức nhất định - đây thực sự là lập trình bóng bán dẫn cho một loạt các hoạt động logic tuần tự thay vì "bật" hoặc "tắt" đơn giản.

Giáo sư Walter M. Weber cho biết: "Cho đến nay, trí thông minh của điện tử hình thành chỉ đơn giản bằng cách kết nối một số bóng bán dẫn, mỗi bóng bán dẫn chỉ có một chức năng khá sơ khai. Trong tương lai, trí thông minh này có thể được chuyển sang khả năng thích ứng của chính bóng bán dẫn mới". - Các phép toán số học, trước đây yêu cầu 160 bóng bán dẫn, sẽ trở nên khả thi với 24 bóng bán dẫn do khả năng thích ứng tăng lên. Bằng cách này, tốc độ và hiệu suất năng lượng của mạch cũng có thể được tăng lên đáng kể. "

Tin tức thú vị khác:

▪ Sony ngừng MiniDisc

▪ Điều khiển bằng cử chỉ siêu âm của các thiết bị

▪ Chuột máy tính có thể phát hiện cảm xúc căng thẳng

▪ Camera tốc độ cao 4,8 triệu khung hình/giây

▪ Bộ xử lý Intel Celeron D351 mới

Nguồn cấp tin tức khoa học và công nghệ, điện tử mới

 

Tài liệu thú vị của Thư viện kỹ thuật miễn phí:

▪ phần của trang web Y học. Lựa chọn bài viết

▪ Bài viết của Lunokhod. Lịch sử phát minh và sản xuất

▪ bài viết Những nhân vật hoạt hình được yêu thích nào được lồng tiếng bởi một cặp vợ chồng? đáp án chi tiết

▪ bài viết của cỏ xạ hương Ziziphorus. Truyền thuyết, canh tác, phương pháp áp dụng

▪ bài viết Đầu thu hồng ngoại của mật mã điện tử có bộ giải mã. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

▪ bài viết Lên kế hoạch nâng. bí mật tập trung

Để lại bình luận của bạn về bài viết này:

Имя:


Email (tùy chọn):


bình luận:





Tất cả các ngôn ngữ của trang này

Trang chủ | Thư viện | bài viết | Sơ đồ trang web | Đánh giá trang web

www.diagram.com.ua

www.diagram.com.ua
2000-2024