Menu English Ukrainian Tiếng Nga Trang Chủ

Thư viện kỹ thuật miễn phí cho những người có sở thích và chuyên gia Thư viện kỹ thuật miễn phí


ENCYCLOPEDIA VỀ ĐIỆN TỬ TRUYỀN THANH VÀ KỸ THUẬT ĐIỆN
Thư viện miễn phí / Sơ đồ của các thiết bị vô tuyến-điện tử và điện

Lỗi đèn pin không có bộ chỉnh lưu. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

Thư viện kỹ thuật miễn phí

Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện / ánh sáng

Bình luận bài viết Bình luận bài viết

В ряде публикаций [1-3] предлагается использовать в электродинамических фонариках ("жучках") вместо лампочек накаливания сверхъяркие светодиоды. Для питания таких светодиодных "лампочек" рекомендуется вотраивать в "жучок" выпрямитель с накопителем энергии (аккумулятором или ионистором) и узел, регулирующий или стабилизирующий выпрямленное напряжение.

Простые опыты показали, что при включении по схеме на рис.1,а светодиод светит без мигания и устойчиво от одной полуволны переменною напряжения, вырабатываемого генератором G1.

Lỗi đèn pin không có bộ chỉnh lưu

Для защиты светодиода от обратного напряжения можно не подключать диод VD1, если амплитуда переменного напряжения не превышает 10 В, По данным из [4-6], светодиоды (выдерживают обратное напряжение 15.. .20 В и выше, а из моего "жучка" даже при интенсивной работе рычагом не удалось "выжать" больше 9 В.

Поэтому все переделки сводятся к минимуму. Надо лишь изготовить светодиодную "лампочку", вмонтировав сверхъяркий светодиод в стандартный цоколь от лампочки накаливания. Необходимые действия подробно описаны в [3]. Рекомендую вывод светодиода припаивать к резьбовой части цоколя не изнутри, а снаружи, возле неглубокого пропила, сделанного надфилем в отбортовке цоколя. Флюсом при облуживании служит половинка (так удобнее) таблетки аспирина. Облуженный цоколь промывается водой, протирается и высушивается. После этого выводы светодиода формуются и припаиваются к резьбовой и центральной частям цоколя. Желательно заполнить внутреннюю полость цоколя изолятором. Я использовал каплю монтажной пены. После ее полимеризации через сутки можно ввернуть "лампочку" в патрон фонарика и использовать его как обычно.

Чтобы не "пропадала" и вторая полуволна напряжения, стоит включить еще один светодиод, припаяв его встречно-параллельно первому (рис.1,б). Места в цоколе достаточно. Этот вариант предпочтительнее других благодаря высокой светоотдаче и равномерной загрузке генератора. Схема на рис.1,в тоже равномерно загружает генератор, но так как светодиоды включены попарно последовательно, то при низких оборотах генератора (при разгоне) свет загорается при более высоком напряжении. Эта схема больше подходит для работы от сети.

Если использовать ионистор в качестве накопителя электроэнергии, то он включается по схеме на рис.2.

Lỗi đèn pin không có bộ chỉnh lưu

Об особенностях работы ионисторов в "жучке" следует сказать несколько слов. При зарядке обнаружилось, что не удается поднять напряжение на ионисторе до нужного уровня, что называется, "в лоб". После того, как в ионистор "закачан" заряд определенной величины, напряжение выше не поднимается, как ни старайся. Но стоит только прекратить накачку и сделать перерыв не больше 10...15 с (при этом напряжение на ионисторе падает на несколько десятков милливольт), как следующая накачка проходит легко до очередного"препятствия", преодолеть которое опять надо кратковременной паузой, и т.д.. пока не будет достигнут нужный уровень напряжения на ионисторе. Особенно заметно это явление при двух ионисторах. Чтобы поднять напряжение до 4,41 В, потребовалось более двадцати подобных "ступенек*.

Нужно ли поднимать напряжение на ионисторе до номинальных 5,5 В? Полагаю, нет, ибо это вредно для ионистора. В [7] приведены такие цифры: при температуре от -25°С до +75°С и рабочем напряжении 0,6Uном ионистор способен проработать 40000 часов (около 5 лет). Отсюда вывод: при Uном=5.5 В ионистор не следует заряжать до напряжения выше 3.3 В Кроме того, средняя величина прямого падения напряжения на светодиоде составляет 3,6 В. Это выше, чем "щадящее" 3,3 В для ионистора.

На простом опыте установлено, что разрядка ионистора на один светодиод (снижение напряжения от 4,41 В до 3,33 В) происходит за 1 мин, причем повышенная яркость наблюдается первые 10...20 с. После этого ионистор разряжается с приемлемой светоотдачей еще минут 20. Таким образом, смысла поднимать напряжение на ионисторе выше 3,4...3.5 В нет. В таблице приведены время разряда ионистора от 3,52 В и яркость светодиода. Критерием служила разборчивость газетного текста при освещении фонариком. Эти цифры хорошо соотносятся с разрядными напряжениями в батарейном (два гальванических элемента типоразмера АА) фонарике электромонтажника, в котором вместо лампочки накаливания установлен один светодиод.


(bấm vào để phóng to)

Вмонтировать в корпус фонаря схему, приведенную на рис.2, будет легче, если удалить траверсу с патроном для цоколя лампы. В освободившемся объеме легко размещаются ионисторы С1, С2 (диаметр - 18.5 мм, толщина - 5,5 мм), диод VD1 и светодиоды HL1, HL2.

Кнопка SB1 (микропереключатель МП11) размещается на месте поводка, перемещавшего траверсу относительно фокуса фары. В качестве общего провода использована пластинка фольги рованного стеклотекстолита. К ней в нужных местах крепятся пайкой выводы всех комплектующих, кроме VD1 и SB1.Диод VD1 соединяет вывод "+" ионисторов с кнопкой. Остальной монтаж выполнен гибким изолированным проводом. Плата крепится двумя винтами с потайными головками к пластикевой щечке генератора, защищающей ротор с магнитами.

Văn chương

  1. Усовершенствование электромеханического фонаря. -Радио, 2007. №9, С.58.
  2. Светодиод в электромеханическом фонаре. - Радио, 2006, №8. С.57.
  3. Хитрый "жук". - Радиомир, 2007. №9, С.44.
  4. Сверхьяркие светодиоды. - Радиомир, 2004, №5...7.
  5. Суперъяркие светодиоды. - Радиомир, 2006. №11,12.
  6. Светодиод в роли стабилитрона. - Радио, 1997, №3. С.51.
  7. Ионисторы серии К58. - Радио-мир, 2003, №6, С.45.

Автор: В.Мирошниченко, г.Краснодар

Xem các bài viết khác razdela ánh sáng.

<< Quay lại

Tin tức khoa học công nghệ, điện tử mới nhất:

Một cách mới để kiểm soát và điều khiển tín hiệu quang 05.05.2024

Thế giới khoa học và công nghệ hiện đại đang phát triển nhanh chóng, hàng ngày các phương pháp và công nghệ mới xuất hiện mở ra những triển vọng mới cho chúng ta trong nhiều lĩnh vực khác nhau. Một trong những đổi mới như vậy là sự phát triển của các nhà khoa học Đức về một phương pháp mới để điều khiển tín hiệu quang học, phương pháp này có thể dẫn đến tiến bộ đáng kể trong lĩnh vực quang tử học. Nghiên cứu gần đây đã cho phép các nhà khoa học Đức tạo ra một tấm sóng có thể điều chỉnh được bên trong ống dẫn sóng silica nung chảy. Phương pháp này dựa trên việc sử dụng lớp tinh thể lỏng, cho phép người ta thay đổi hiệu quả sự phân cực của ánh sáng truyền qua ống dẫn sóng. Bước đột phá công nghệ này mở ra triển vọng mới cho việc phát triển các thiết bị quang tử nhỏ gọn và hiệu quả có khả năng xử lý khối lượng dữ liệu lớn. Việc điều khiển phân cực quang điện được cung cấp bởi phương pháp mới có thể cung cấp cơ sở cho một loại thiết bị quang tử tích hợp mới. Điều này mở ra những cơ hội lớn cho ... >>

Bàn phím Primium Seneca 05.05.2024

Bàn phím là một phần không thể thiếu trong công việc máy tính hàng ngày của chúng ta. Tuy nhiên, một trong những vấn đề chính mà người dùng gặp phải là tiếng ồn, đặc biệt là ở các dòng máy cao cấp. Nhưng với bàn phím Seneca mới của Norbauer & Co, điều đó có thể thay đổi. Seneca không chỉ là một bàn phím, nó là kết quả của 5 năm phát triển để tạo ra một thiết bị lý tưởng. Mọi khía cạnh của bàn phím này, từ đặc tính âm thanh đến đặc tính cơ học, đều được xem xét và cân bằng cẩn thận. Một trong những tính năng chính của Seneca là bộ ổn định im lặng, giúp giải quyết vấn đề tiếng ồn thường gặp ở nhiều bàn phím. Ngoài ra, bàn phím còn hỗ trợ nhiều độ rộng phím khác nhau, thuận tiện cho mọi người dùng. Mặc dù Seneca vẫn chưa có sẵn để mua nhưng nó được lên kế hoạch phát hành vào cuối mùa hè. Seneca của Norbauer & Co đại diện cho các tiêu chuẩn mới trong thiết kế bàn phím. Cô ấy ... >>

Khai trương đài quan sát thiên văn cao nhất thế giới 04.05.2024

Khám phá không gian và những bí ẩn của nó là nhiệm vụ thu hút sự chú ý của các nhà thiên văn học từ khắp nơi trên thế giới. Trong bầu không khí trong lành của vùng núi cao, cách xa ô nhiễm ánh sáng thành phố, các ngôi sao và hành tinh tiết lộ bí mật của chúng một cách rõ ràng hơn. Một trang mới đang mở ra trong lịch sử thiên văn học với việc khai trương đài quan sát thiên văn cao nhất thế giới - Đài thiên văn Atacama của Đại học Tokyo. Đài quan sát Atacama nằm ở độ cao 5640 mét so với mực nước biển mở ra cơ hội mới cho các nhà thiên văn học trong việc nghiên cứu không gian. Địa điểm này đã trở thành vị trí cao nhất cho kính viễn vọng trên mặt đất, cung cấp cho các nhà nghiên cứu một công cụ độc đáo để nghiên cứu sóng hồng ngoại trong Vũ trụ. Mặc dù vị trí ở độ cao mang lại bầu trời trong xanh hơn và ít bị nhiễu từ khí quyển hơn, việc xây dựng đài quan sát trên núi cao đặt ra những khó khăn và thách thức to lớn. Tuy nhiên, bất chấp những khó khăn, đài quan sát mới mở ra triển vọng nghiên cứu rộng lớn cho các nhà thiên văn học. ... >>

Tin tức ngẫu nhiên từ Kho lưu trữ

Tái tạo cái rốn của trái đất 12.11.2004

“Cái rốn của trái đất” ở đâu? Hóa ra đây không phải là một thành ngữ, mà là một điểm có thật ở thành phố Delphi của Hy Lạp.

Theo thần thoại, thần Zeus muốn biết trung tâm của thế giới nằm ở đâu, đã thả hai con đại bàng về phía đông và phía tây. Nơi họ gặp nhau là "cái rốn của trái đất." Người Hy Lạp đã đánh dấu nơi này bằng một tảng đá cẩm thạch hình nón nặng khoảng một tấn, hiện nằm gần nơi bị phá hủy bởi một trận động đất vào năm 373 trước Công nguyên.

Các nhà vật lý từ Đại học Cagliari (Ý) đã sử dụng đặc điểm từ tính của khoáng chất để ước tính nhiệt độ của một đám mây tro núi lửa và đá do Vesuvius phun ra trong vụ phun trào nổi tiếng năm 79 sau Công nguyên giết chết thành phố Pompeii. Khoáng chất được hình thành từ sự nóng chảy, thu được từ tính từ từ trường của Trái đất khi nguội đi. Nếu sau đó chúng được nung nóng, từ tính này thay đổi hoặc biến mất hoàn toàn. Do đó, bằng cách đo tính chất từ ​​tính của đá cuội và tro do núi lửa phun ra, có thể xác định được nhiệt độ mà những mảnh vỡ này đã trải qua.

Hai trăm viên đá núi lửa và các mảnh vỡ khác, chẳng hạn như ngói từ mái nhà của Pompeii, đã được phân tích. Hóa ra đám mây tro bụi núi lửa do Vesuvius ném ra có nhiệt độ trên 850 độ C, nhưng khi đến thành phố, có thời gian lạnh xuống dưới 380 độ.

Hầu hết các vật thể đo được đều bị nung nóng từ 240 đến 340 độ C. Nhưng ở phía bãi trống của các ngôi nhà, nơi có sự hỗn loạn hút không khí lạnh vào một đám mây khí núi lửa một cách hiệu quả, nhiệt độ chỉ tăng lên 180 độ. Tuy nhiên, điều đó cũng đủ cho cái chết của tất cả các sinh vật sống trong thành phố.

Tin tức thú vị khác:

▪ Củ cải đường là loại rau nguy hiểm nhất

▪ Động vật lớn và dịch bệnh chết người

▪ Quế làm giảm tác hại từ thức ăn béo

▪ năng lượng từ tai

▪ Card đồ họa OneXGPU có bộ lưu trữ SSD tích hợp

Nguồn cấp tin tức khoa học và công nghệ, điện tử mới

 

Tài liệu thú vị của Thư viện kỹ thuật miễn phí:

▪ phần radio của trang web. Lựa chọn bài viết

▪ bài viết Shorn hoặc cạo. biểu hiện phổ biến

▪ bài viết Cụm từ của Lenin về đầu bếp và nhà nước thực sự nghe như thế nào? đáp án chi tiết

▪ bài báo Aerosleigh Sever-2. phương tiện cá nhân

▪ bài viết Polyethylene cách nhiệt. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

▪ bài viết Băng ma thuật. bí mật tập trung

Để lại bình luận của bạn về bài viết này:

Имя:


Email (tùy chọn):


bình luận:





Tất cả các ngôn ngữ của trang này

Trang chủ | Thư viện | bài viết | Sơ đồ trang web | Đánh giá trang web

www.diagram.com.ua

www.diagram.com.ua
2000-2024