Menu English Ukrainian Tiếng Nga Trang Chủ

Thư viện kỹ thuật miễn phí cho những người có sở thích và chuyên gia Thư viện kỹ thuật miễn phí


Làm sao nghe nắng. Phòng thí nghiệm Khoa học Trẻ em

Phòng thí nghiệm Khoa học dành cho Trẻ em

Cẩm nang / Phòng thí nghiệm Khoa học dành cho Trẻ em

Bình luận bài viết Bình luận bài viết

Солнечный голос... Необычное сочетание слов, не правда ли? Все мы привыкли к понятиям "солнечный свет", "солнечные лучи", словом, к тому, что нашу звезду можно видеть. Но что ее можно еще и слышать...

Гипотезу о существовании солнечного голоса выдвинул горьковский ученый-астроном, труды которого хорошо известны у нас в стране и за рубежом, профессор Владимир Вячеславович Радзиевский. Больше того, он даже предсказывает, как будет звучать солнечный голос: в нем можно услышать и грохот ураганов, и завывание бурь, и мерный рокот морского прибоя, и причудливое сочетание иных, доселе неведомых нам звуков. А будучи расшифрован, этот голос, возможно, откроет немало тайн нашей звезды.

Как родилась необычная идея слушать Солнце? Владимир Вячеславович, отвечая на этот вопрос, говорит, что случилось не столь уж редкое в науке явление, когда ищут одно, а находят совсем другое. Но история его идеи - это не только пример необыкновенных, неожиданных поворотов в увлекательном научном поиске, это еще и образец упорного следования логике поиска, умения доводить начатое до логического конца.

Радзиевский изучал, как влияет световое давление на движение небесных тел. Для этого ему было необходимо отыскать возможно более точный способ измерить давление света. Точности, достигаемой в классическом опыте П. Н. Лебедева, было недостаточно. Тем не менее начать рассказ лучше всего, вспомнив, что такое световое давление и как был проведен опыт Лебедева, в ходе которого впервые было доказано существование этого давления и измерена его величина.

В стеклянном сосуде в вакууме на тонкой нити знаменитый физик подвешивал карданный подвес с двумя легонькими "мушиными крылышками" (см. рис.). Так ученый назвал тончайшие металлические листочки диаметром около 5 мм. Одно из таких крылышек было посеребренным, другое - зачерненным. Через систему линз на них направляли свет мощной электрической дуги. А дальше происходило следующее: зачерненная поверхность свет поглощала, от посеребренной же фотоны отражались, отскакивали, придавая тем самым этому крылышку дополнительный импульс. В результате подвес с крылышками закручивался.

Опыт П. Н. Лебедева, как известно, доказал, что световое давление существует. А по углу закручивания подвеса удалось приближенно установить и его величину.

Точное измерение и расчет давления света очень важны для астрономов, которым надо вычислять ход звезд. Это давление, к примеру, во многом предопределяет вид и форму кометных хвостов. Однако опыт П. Н. Лебедева, приведенный еще в последнем году прошлого столетия, для сегодняшних задач, как мы уже сказали, требуемой точности не дает.

Радзиевский искал более четкий способ измерения. Как-то ему на глаза попалась книга под названием "Слух и речь". Автор книги доказывал, что человеческое ухо гораздо чувствительней глаза. Казалось бы, сравнивать два этих органа чувств между собой так же бессмысленно, как, скажем, сопоставлять качество музыкальных произведений и кондитерских изделий. Ведь глаз реагирует на электромагнитное поле, а ухо - на акустическое. Тем не менее рациональное зерно в таком сопоставлении есть. Относительное превосходство уха над глазом очевидно хотя бы из такого примера. Глаз не в состоянии уловить чередование кадров на киноэкране, которое происходит с частотой всего лишь 24 кадра в секунду. А барабанная перепонка уха способ-давления с частотой до 20 тыс. герц.

Вспомнилось ученому и то, что давно уже существует весьма простой и удобный прибор для проверки слуха - термофон. С его помощью испытывали, например, новобранцев в армии. Термофон представляет собой герметичную коробочку с зачерненной проволочкой, от которой имеется один выход - в ухо. На проволочку подается ток силой 1 ампер, который модулируется переменным током звуковой частоты - 600 герц. Переменные величины здесь исчезающе малы: амплитуда переменного тока, например, составляет одну десятимиллионную долю вольта. За 1/600 долю секунды проволочка успевает чуть-чуть расшириться, в следующий микроинтервал - чуть-чуть сжаться... Но даже эти ничтожные колебания ухо слышит, правда, у каждого человека по-разному, что и используют для проверки слуха.

Эти факты навели Радзиевского на мысль: если слух настолько чуток, быть может, с его помощью удастся измерить световое давление более точно? Для проверки он провел несложный опыт (см. рис.) Ученый сделал диск, в котором на одинаковом расстоянии друг от друга было вырезано пять круглых отверстий равного диаметра. Диск начинают вращать со скоростью 100 об/мин и направляют на него мощный пучок света. Позади диска, напротив одного из отверстий установлена герметичная коробочка с посеребренной мембраной. Из коробочки выходит тонкая трубка, которую вставляют в ухо. В течение минуты свет 500 раз перекрывается и снова открывается, мембрана то находится под действием света, то нет. Следовательно, она должна звучать, испытывая периодическое воздействие светового давления. Опыт удался на славу. Звук рождался достаточно сильный. Оставалось только откалибровать его силу, и можно было вычислять величину светового давления... Эврика?

Успех, какой-то уж слишком легкий, не мог не насторожить настоящего исследователя. Для проверки ученый (как он сам признается - чисто интуитивно) зачернил мембрану сажей. Звучание должно было исчезнуть, или, по крайней мере, стать значительно слабее. Ведь световое давление пропорционально коэффициенту отражения света, а у зачерненной поверхности он ничтожно мал. Однако случилось совсем другое. Мембрана буквально заревела!.

Làm thế nào để nghe thấy mặt trời
Подвес с "мушиными крылышками" в опыте П. Н. Лебедева.

Стало ясно, что в опыте главным образом проявляет себя вовсе не световое давление. В чем же тогда причина наблюдаемого явления? Очевидно, в том, предположил исследователь, что сажа попросту нагревается под воздействием светового потока и охлаждается, когда свет перекрыт (вспомните проволочку в термофоне). Следовательно, прилегающий к мембране слой воздуха периодически расширяется и сжимается. Упругие колебания воздуха и передаются барабанной перепонке. Еще раз такую разгадку подтвердил новый эксперимент, где вместо мощной электрической дуги источником света служила обычная лампочка. Эффект проявлялся, но звучание, естественно, стало потише.

Собственно говоря, проверочный опыт нетрудно воспроизвести. Для этого понадобится несложный прибор - обычный медицинский фонендоскоп, каким врач прослушивает больного. Взяв его в руки, вы увидите, что на звукоулавливающую камеру навинчена гайка, прочно прижимающая к камере жесткую мембрану (см. рис.). Отвинтите ее, покройте внутреннюю поверхность камеры толстым слоем копоти, а затем поставьте гайку и мембрану на место, тщательно проверив плотность их прилегания. Резиновые трубки и ушные вкладыши также должны быть герметичны. Ведь возникающая в камере звуковая энергия ничтожно мала, и самая незначительная ее утечка приведет к неудаче.

Если теперь вы поднесете фонендоскоп к лампочке (расстояние между ними будет зависеть от остроты вашего слуха и может колебаться от 10 см до 1 м), то услышите ровное низкое гудение, соответствующее звучанию камертона с частотой 50 герц. У кого-то могут возникнуть сомнения - не вызван ли звук переменным электромагнитным полем? Попробуйте перекрыть свет любым непрозрачным экраном. Звук сразу пропадет и появится в тот же момент, когда экран будет убран. Напротив, прозрачный экран, к примеру из оргстекла, звучания лампочки не снимает.

Làm thế nào để nghe thấy mặt trời
Опыт с вращающимся диском

Происхождение звука здесь точно такое же, как и в описанном выше эксперименте. Радзиевский назвал это яввление фотофонным эффектом, а прибор для его обнаружения ("модернизированный" с помощью сажи фонендоскоп) - фотофоном.

Человеку с техническим складом ума сразу же придет в голову, как практически применить фотофон. Ну хотя бы для проверки качества лампочек. Характер звучания лампочки, по-видимому, должен быть связан с техническим состоянием нити накала.

Làm thế nào để nghe thấy mặt trời
Устройство фотофона

Но, конечно, не в лампочках главное. В конце концов, качество их умеют определять и без фотофона. Размышляя над обнаруженным эффектом, Радзиевский вдруг поймал себя на простой и в то же время необычайно дерзкой мысли. Если фотофон слышит обычную стоваттную лампочку, значит, он может отозваться и на неизмеримо более мощный излучатель - Солнце...

Вот мы и проследили в общих чертах путь зарождения идеи прослушивания Солнца. Вдумчивый читатель даже по этим немногим событиям и фактам, наверное, сможет догадаться о том, что Владимир Вячеславович принадлежит к тому нечасто встречающемуся типу исследователей, который в научном мире называют "генераторами идей". Действительно, трудно даже сосчитать, не говоря уже о том, чтобы перечислить, все гипотезы, выдвинутые им на протяжении многолетней научной деятельности. При этом ученый охотно делится своими идеями с коллегами, прежде всего со своими учениками, работающими во многих городах страны. Пусть некоторые его гипотезы и не подтвердились - это неизбежно в науке, зато другие идеи плодотворно разрабатываются. И еще нетрудно заметить, что Радзиевский может обойтись без дорогостоящего оборудования или каких-то особенных приборов. Его всегда выручает нестандартное мышление, выдумка и творческая фантазия. Убедиться в этом у нас еще будут новые возможности.

Вернемся к гипотезе. Солнечный свет, как и свет лампочки, в действительности совсем не такой ровный, как это воспринимает невооруженный глаз. При наблюдении в телескоп поверхность нашего светила напоминает кипящую рисовую кашу. Каждое зернышко "каши" - гранула - это результат конвективного прорыва через фотосферу Солнца более раскаленной массы газа из его недр. Размер каждой гранулы составляет от 150 до 1000 км, среднее время ее жизни - 3-5 минут, а температура на 300-500 градусов выше окружающего фона. Каждую сотую долю секунды рождается и умирает около 50 гранул, а одновременно на Солнце их наблюдается около миллиона. Отсюда и создается впечатление кипящей каши. Все эти процессы постоянного рождения и смерти гранул неизбежно придают солнечному свету "дрожание", частота которого колеблется в широком звуковом спектре, в том числе, естественно, и слышимом. А дальше фантазия подсказала ученому, что в такой пестрой звуковой картине должны греметь ураганы, завывать бури... А за ними стоят реальные физические процессы, которые, быть может, многое могут рассказать о себе сами. Правда, надо еще научиться расшифровывать язык солнечных бурь и шепотов.

Итак, возможность услышать Солнце, согласитесь, кажется очень заманчивой. Но Солнце, хотя и обладает колоссальной мощностью излучения, находится, как мы помним, на расстоянии 150 миллионов километров. Его, как лампочку, к фотофону не поднесешь. Вызовут ли звучание прибора лучи, идущие из такой дали? Радзиевский сделал необходимые расчеты. Оказалось, что для проверки гипотезы нужен мощный телескоп с диаметром зеркала не менее 6-7 м. При чем здесь телескоп? Его назначение не только (и не столько) в том, чтобы приблизить к наблюдателю изучаемые небесные тела, сколько в том, чтобы усиливать идущие от них сигналы. Усиление возрастает пропорционально квадрату диаметра зеркала. Только с мощным усилителем - телескопом возможность услышать солнечный голос становилась реальной (см. рис.).

Làm thế nào để nghe thấy mặt trời
Схема прослушивания Солнца

Еще каких-то несколько лет назад подобных телескопов не существовало. И у Радзиевского все ограничилось статьей в специальном научном журнале. Мнения коллег об идее Радзи евского разделились.

Один из самых серьезных доводов скептиков звучит так: шумы в атмосфере настолько сильны, что сквозь них солнечный голос до Земли не дойдет. В ответ на подобные сомнения Владимир Вячеславович приводит хорошо известный пример с... летучими мышами.

Все знают, что летучие мыши ведут ночной образ жизни. Видят они плохо, а передвигаются с помощью ультразвуковых сигналов, излучая волну, которая отражается от окружающих предметов и, возвращаясь к ним, дает возможность правильно ориентироваться. В свое время ученые решили проверить: связан ли их образ жизни просто с привычкой спать в определенные часы или имеет другие, более глубокие причины? Для этого летучих мышей посадили в самолет и перевезли через несколько часовых поясов, сдвинув их сутки на 8 часов. И что же - мыши спокойно сидели на шестках до самого захода Солнца, а с наступлением темноты начали свои обычные полеты.

Радзиевский объясняет этот факт следующим образом. Земля реагирует на солнечное излучение как гигантская поглощающая мембрана. Эта реакция выражается в шуме, который не слышен людям, но хорошо улавливается более чувствительными летучими мышами. Для них шум представляет собой мощный фон, на котором теряются их собственные слабые сигналы. Поэтому днем они лишены возможности ориентировки. После захода Солнца шум пропадает, и мыши получают возможность передвигаться. Атмосферные же шумы, существующие и ночью, летучим мышам не мешают. Значит, они не настолько сильны, что бы помешать прослушиванию Солнца.

Словом, дело за будущим экспериментом на одном из построенных в последние годы мощных телескопов. Только опыт может подтвердить или опровергнуть идею. А сегодня даже трудно прогнозировать, что последует за исходом проверочного эксперимента, если он будет удачным. Может быть, солнечный голос позволит получить новую информацию о происходящих на нашей звезде процессах, которые понятны еще далеко не полностью. Может быть, простенький фотофон станет основой сверхчувствительных приборов, которые смогут уловить шум Земли, рождаемой солнечным светом. А этот шум многое мог бы рассказать и о Земле и о Солнце...

Автор: В.Мейеров

 Chúng tôi giới thiệu các bài viết thú vị razdela Phòng thí nghiệm Khoa học dành cho Trẻ em:

▪ Thử nghiệm Galileo Galilei

▪ sét dưới nước

▪ Kính hiển vi Leeuwenhoek

Xem các bài viết khác razdela Phòng thí nghiệm Khoa học dành cho Trẻ em.

Đọc và viết hữu ích bình luận về bài viết này.

<< Quay lại

Tin tức khoa học công nghệ, điện tử mới nhất:

Da nhân tạo để mô phỏng cảm ứng 15.04.2024

Trong thế giới công nghệ hiện đại, nơi khoảng cách ngày càng trở nên phổ biến, việc duy trì sự kết nối và cảm giác gần gũi là điều quan trọng. Những phát triển gần đây về da nhân tạo của các nhà khoa học Đức từ Đại học Saarland đại diện cho một kỷ nguyên mới trong tương tác ảo. Các nhà nghiên cứu Đức từ Đại học Saarland đã phát triển những tấm màng siêu mỏng có thể truyền cảm giác chạm vào từ xa. Công nghệ tiên tiến này mang đến những cơ hội mới cho giao tiếp ảo, đặc biệt đối với những người đang ở xa người thân. Các màng siêu mỏng do các nhà nghiên cứu phát triển, chỉ dày 50 micromet, có thể được tích hợp vào vật liệu dệt và được mặc như lớp da thứ hai. Những tấm phim này hoạt động như những cảm biến nhận biết tín hiệu xúc giác từ bố hoặc mẹ và đóng vai trò là cơ cấu truyền động truyền những chuyển động này đến em bé. Việc cha mẹ chạm vào vải sẽ kích hoạt các cảm biến phản ứng với áp lực và làm biến dạng màng siêu mỏng. Cái này ... >>

Cát vệ sinh cho mèo Petgugu Global 15.04.2024

Chăm sóc thú cưng thường có thể là một thách thức, đặc biệt là khi bạn phải giữ nhà cửa sạch sẽ. Một giải pháp thú vị mới từ công ty khởi nghiệp Petgugu Global đã được trình bày, giải pháp này sẽ giúp cuộc sống của những người nuôi mèo trở nên dễ dàng hơn và giúp họ giữ cho ngôi nhà của mình hoàn toàn sạch sẽ và ngăn nắp. Startup Petgugu Global đã trình làng một loại bồn cầu độc đáo dành cho mèo có thể tự động xả phân, giữ cho ngôi nhà của bạn luôn sạch sẽ và trong lành. Thiết bị cải tiến này được trang bị nhiều cảm biến thông minh khác nhau để theo dõi hoạt động đi vệ sinh của thú cưng và kích hoạt để tự động làm sạch sau khi sử dụng. Thiết bị kết nối với hệ thống thoát nước và đảm bảo loại bỏ chất thải hiệu quả mà không cần sự can thiệp của chủ sở hữu. Ngoài ra, bồn cầu có dung lượng lưu trữ lớn có thể xả nước, lý tưởng cho các hộ gia đình có nhiều mèo. Bát vệ sinh cho mèo Petgugu được thiết kế để sử dụng với chất độn chuồng hòa tan trong nước và cung cấp nhiều lựa chọn bổ sung. ... >>

Sự hấp dẫn của những người đàn ông biết quan tâm 14.04.2024

Định kiến ​​phụ nữ thích “trai hư” đã phổ biến từ lâu. Tuy nhiên, nghiên cứu gần đây được thực hiện bởi các nhà khoa học Anh từ Đại học Monash đã đưa ra một góc nhìn mới về vấn đề này. Họ xem xét cách phụ nữ phản ứng trước trách nhiệm tinh thần và sự sẵn sàng giúp đỡ người khác của nam giới. Những phát hiện của nghiên cứu có thể thay đổi sự hiểu biết của chúng ta về điều gì khiến đàn ông hấp dẫn phụ nữ. Một nghiên cứu được thực hiện bởi các nhà khoa học từ Đại học Monash dẫn đến những phát hiện mới về sức hấp dẫn của đàn ông đối với phụ nữ. Trong thí nghiệm, phụ nữ được cho xem những bức ảnh của đàn ông với những câu chuyện ngắn gọn về hành vi của họ trong nhiều tình huống khác nhau, bao gồm cả phản ứng của họ khi gặp một người đàn ông vô gia cư. Một số người đàn ông phớt lờ người đàn ông vô gia cư, trong khi những người khác giúp đỡ anh ta, chẳng hạn như mua đồ ăn cho anh ta. Một nghiên cứu cho thấy những người đàn ông thể hiện sự đồng cảm và tử tế sẽ hấp dẫn phụ nữ hơn so với những người đàn ông thể hiện sự đồng cảm và tử tế. ... >>

Tin tức ngẫu nhiên từ Kho lưu trữ

Giảng viên sẽ dễ hiểu hơn 24.12.2002

Tập đoàn Nhật Bản "JVC" đã giới thiệu một máy thu thanh có thể tự động điều chỉnh hướng đi của những người thuyết trình và làm cho bài phát biểu của họ được đo lường hơn.

Sự phát triển tập trung chủ yếu vào những người lớn tuổi, những người không có thời gian để cảm nhận lời nói quá nhanh. Giọng nói của người nói được ghi lại trên một mạch tích hợp bán dẫn, nơi nó trải qua quá trình xử lý nhanh: các khoảng tạm dừng bị loại bỏ, do đó các từ hơi bị kéo dài.

Đồng thời, càng xa càng tốt, các kết thúc "ăn", do dự và các điểm không chính xác khác sẽ được sửa chữa.

Tin tức thú vị khác:

▪ Vòng đeo tay thể dục Garmin vivosmart 5

▪ Tác hại của muỗi đốt đối với cơ thể

▪ Sức khỏe từ khi còn trẻ

▪ Nhật Bản sẽ không còn cần tài xế trong XNUMX năm nữa

▪ Cảm biến hình ảnh APD-CMOS chụp ở độ sáng 0,01 lux

Nguồn cấp tin tức khoa học và công nghệ, điện tử mới

 

Tài liệu thú vị của Thư viện kỹ thuật miễn phí:

▪ phần trang web Các thiết bị hiện tại còn lại. Lựa chọn bài viết

▪ Bài viết nâng nước. Vẽ, mô tả

▪ bài báo Ô tô có thể phá vỡ rào cản âm thanh không? đáp án chi tiết

▪ bài viết Thành phần chức năng của TV Elekta. Danh mục

▪ bài báo Khởi động động cơ ô tô từ ổ cắm. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

▪ bài viết Đồng hồ chuyển động. bí mật tập trung

Để lại bình luận của bạn về bài viết này:

Имя:


Email (tùy chọn):


bình luận:





Tất cả các ngôn ngữ của trang này

Trang chủ | Thư viện | bài viết | Sơ đồ trang web | Đánh giá trang web

www.diagram.com.ua

www.diagram.com.ua
2000-2024