Menu English Ukrainian Tiếng Nga Trang Chủ

Thư viện kỹ thuật miễn phí cho những người có sở thích và chuyên gia Thư viện kỹ thuật miễn phí


ENCYCLOPEDIA VỀ ĐIỆN TỬ TRUYỀN THANH VÀ KỸ THUẬT ĐIỆN
Thư viện miễn phí / Sơ đồ của các thiết bị vô tuyến-điện tử và điện

Bộ thu VHF FM với bộ cộng hưởng khoang. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

Thư viện kỹ thuật miễn phí

Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện / thu sóng vô tuyến

Bình luận bài viết Bình luận bài viết

Детекторные приемники обычно изготавливают для приема радиовещательных станций, работающих с AM в диапазонах ДВ, СВ [1, 2] и реже КВ. В диапазоне же УКВ их практически не используют. Это связано, во-первых, с тем, что надо получить уровень сигнала, достаточный для его детектирования. В диапазонах ДВ и СВ это достигается увеличением длины антенны, в УКВ диапазоне делать это почти бесполезно, так как длина волны составляет всего несколько метров. Во-вторых, необходимо обеспечить селекцию принимаемого сигнала. Если в ДВ и СВ диапазонах для этого нужна добротность нагруженного контура 25...100 и контур можно реализовать на обычных LC-элементах, то в УКВ диапазоне необходима добротность более 100 и получить ее не так просто.

Есть еще одна проблема - простой диодный детектор способен демодулировать лишь сигналы с AM. Поэтому для демодуляции ЧМ сигналов необходимо предварительно преобразовать ЧМ в AM. Сделать это можно на скате амплитудно-частотной характеристики (резонансной кривой) колебательного контура, как показано на рис. 1.

Bộ thu FM VHF với bộ cộng hưởng âm thanh

При такой настройке изменения частоты принимаемого сигнала приводят к изменению его амплитуды. После этого сигнал можно демодулировать простым диодным детектором. Понятно, что для хорошего преобразования необходима большая крутизна характеристики, т.е. опять-таки большая добротность контура.

Высокую добротность имеет спиральный объемный резонатор (рис. 2).

Bộ thu FM VHF với bộ cộng hưởng âm thanh

Он содержит круглый или прямоугольный экран, внутри которого размещена однослойная катушка. Один ее конец замкнут на экран, а второй разомкнут. Для перестройки резонатора по частоте со стороны разомкнутого вывода спирали к ней подводят металлический сердечник или пластину, при этом изменяется емкость резонатора. Добротность ненагруженных спиральных резонаторов, в зависимости от их конструкции и частоты настройки, может находиться в пределах 200...5000.

Схема детекторного УКВ ЧМ приемника показана на рис. 3.

Bộ thu FM VHF với bộ cộng hưởng âm thanh

Его основой является спиральный объемный резонатор. К спирали через разъем XS1 подключается внешняя антенна. По частоте приемник перестраивается конденсатором переменной емкости С1. На диодах VD1, VD2 собран полумостовой выпрямитель (детектор), на который через конденсатор С2 поступает сигнал от резонатора. К выходу детектора экранированным проводом (его емкость сглаживает ВЧ пульсации продетектированного сигнала) подключают нагрузку - высокоомные телефоны или УЗЧ с большим входным сопротивлением. Чем выше сопротивление нагрузки, тем больше будет добротность резонатора, а значит, больший сигнал поступит на диоды и увеличится уровень сигнала 3Ч.

Для изготовления такого приемника необходимо в первую очередь сделать спиральный резонатор. Для него подойдет цилиндрическая металлическая банка из луженой жести, желательно с металлической крышкой. Конструкция приемника показана на рис. 4, он рассчитан на диапазон 88...108 МГц.

Bộ thu FM VHF với bộ cộng hưởng âm thanh

Использовалась банка 1 из-под кофе "Nescafe" диаметром 75 и высотой 70 мм. Спираль 2 намотана проводом ПЭВ-2 диаметром 2 мм, она содержит 6 витков. Намотка бескаркасная, диаметром 35 мм и длиной 36...40 мм. Количество витков желательно сделать чуть больше, чтобы при необходимости в дальнейшем провести подстройку укорочением спирали. Нижний конец провода пропускают через отверстие в боковой стенке, загибают и припаивают к внешней боковой стороне. На нижней или боковой стороне устанавливают разъем XS1 и центральный контакт соединяют со спиралью на расстоянии примерно 0,1...0,15 витка от начала намотки (не считая прямого отрезка провода). На внутренней стороне банки, ближе к концу спирали, распаивают диоды, а один из выводов через изоляционную втулку выводят наружу.

Конденсатором С2 служит отрезок провода ПЭВ-2 0,4...0,5 длиной 20...30 мм, размещенный рядом с витками спирали. Подвижная часть конденсатора С1 выполнена в виде металлического диска 3, который прикреплен к винту 4. Этот винт перемещается в гайке или втулке 5, которая припаивается к крышке 6. Диск 3 можно изготовить из жести, его диаметр равен диаметру спирали, для уменьшения потерь в нем надо вырезать 1...3 сектора с углом несколько градусов.

Для изготовления спирального резонатора можно использовать металлические банки другого диаметра, причем, чем больше диаметр, тем большую добротность можно получить. Рассчитать резонатор с банкой другого диаметра или на другой диапазон можно по упрощенной методике [3], которая дает вполне удовлетворительные результаты.

Прежде всего, следует стремиться выбрать банку (см. рис. 2) с отношением H/D = 1,2...1,3, где Н - высота банки; D - диаметр банки. Если отношение будет другим, возрастет погрешность расчетов. Количество витков N = 2586/(Fr), где F - верхняя частота настройки (МГц); r - радиус банки (см). Диаметр намотки спирали (по центру провода) d = r, длина намотки I = 1,5r, шаг намотки а = I/N, диаметр провода b = а/4. Расстояние от концов катушки до нижней и верхней стенок желательно выдержать в пределах L = 0,25...0,3D.

При выборе банки следует учитывать следующее. Значение имеет чистота обработки внутренней поверхности, хорошо, если она блестящая. Желательно, чтобы не было стыков, расположенных параллельно катушке, но так как они в большинстве случаев есть, надо обратить внимание на их качество, а при необходимости пропаять. Нижний, заземленный конец катушки надо подводить к боковой стенке под прямым углом.

На основании сказанного выше можно сделать вывод о том, что банка, использованная автором, не является лучшим вариантом. Отношение H/D было около 1, из-за этого нижние витки оказались слишком близко к нижней стенке, а значит, уменьшилась добротность. Погрешность расчета не превысила 8...10% - количество витков должно быть 6,5, а после подстройки получилось 6.

Антенной служил отрезок провода диаметром 1...1,5 мм и длиной четверть волны, в данном случае около 70 см. Уровень принимаемого сигнала сильно зависит от ориентации антенны и места ее расположения. В приемнике желательно использовать высокочастотные германиевые детекторные диоды с возможно меньшей емкостью.

Чтобы получить громкий прием на головные телефоны, необходима большая напряженность поля принимаемого сигнала, что возможно в непосредственной близости от радиостанции. При этом надо стремиться повышать добротность резонатора, уменьшая емкость конденсатора С2, т. е. удаляя отрезок провода от спирали.

Если расстояние до радиостанции значительно, прием на телефоны затруднен из-за малого уровня сигнала. Тогда сигнал от детектора надо подать на УЗЧ, при этом его входное сопротивление должно быть более 100 кОм, а чувствительность - 1...3 мВ. Если такого УЗЧ нет, то его можно изготовить самостоятельно, сделав, таким образом, УКВ ЧМ приемник целиком. Кроме того, можно использовать имеющийся УЗЧ, сделав согласующий каскад на полевом транзисторе.

При испытании макета приемника у автора статьи, из-за удаленности от передающих радиостанций (ближайшая, но не самая мощная, на расстоянии 2 км, остальные далее) на телефоны сопротивлением несколько кОм, принималась только одна радиостанция, причем слабо. Пришлось добавить УЗЧ, после чего очень громко (примерно одинаково) и с хорошим качеством принимались три радиостанции (из семи работающих в этом диапазоне). Две из них громче принимались при горизонтальной ориентации антенны, а одна - вертикальной. По частоте эти радиостанции отстоят друг от друга примерно на 2 МГц, и взаимных помех не наблюдалось. Приемник располагался на подоконнике, антенна была длиной около 70 см. Измерения показали, что полоса пропускания нагруженного спирального резонатора в этом макете составила около 800...850 кГц, что соответствует добротности примерно 125.

Если уровень сигнала большой, добротность целесообразно повысить, увеличив тем самым избирательность, подключав входной разъем ближе к заземленному концу спирали. Следует отметить, что в приемнике нет системы АРУ или ограничителя, поэтому напряжение выходного сигнала 3Ч зависит от уровня принимаемого сигнала. Это значит, что более мощные радиостанции принимаются с большей громкостью.

Схема УЗЧ показана на рис. 5,а.

Bộ thu FM VHF với bộ cộng hưởng âm thanh

Его основой является микросхема К174УН7 в стандартном упрощенном включении. На входе УЗЧ установлен истоковый повторитель на транзисторе VT1, повышающий входное сопротивление. Громкость регулируется резистором R3, резистором R4 устанавливают оптимальный коэффициент усиления микросхемы.

Соединение с приемником следует делать экранированным проводом минимально возможной длины. Объединив резонатор и УЗЧ в одну конструкцию, например, в корпусе от абонентского громкоговорителя, можно сделать неплохой УКВ ЧМ приемник. Если уровень сигналов в месте приема велик настолько, что на выходе приемника будет постоянное продетектиро-ванное напряжение более 1 В, схему истокового повторителя надо доработать в соответствии с рис. 5,б.

Bộ thu FM VHF với bộ cộng hưởng âm thanh

Все детали УЗЧ размещают на печатной плате из фольгированного стеклотекстолита, эскиз которой показан на рис. 6.

Bộ thu FM VHF với bộ cộng hưởng âm thanh

В устройстве можно применить следующие детали: полевой транзистор - КП303Г, Д, КП307А, Б; полярные конденсаторы - К50; неполярные - К10-17; переменный резистор - СП4, СПО; подстроенный - СПЗ-19; постоянные резисторы - МЛТ, С2-33.

Văn chương

  1. Поляков В. Теория: понемногу обо всем. 4.3 Радиоприемники AM сигналов. - Радио, 1999, № 9, с. 49,50.
  2. Polyakov V. Cải tiến máy thu dò. - Đài phát thanh, 2001, số 1, tr. 52, 53.
  3. Ханзел Г. Справочник по расчету фильтров. - М.: Сов. Радио, 1974.

Tác giả: I.Aleksandrov, Kursk

Xem các bài viết khác razdela thu sóng vô tuyến.

Đọc và viết hữu ích bình luận về bài viết này.

<< Quay lại

<< Quay lại

Tin tức khoa học công nghệ, điện tử mới nhất:

Bẫy không khí cho côn trùng 01.05.2024

Nông nghiệp là một trong những lĩnh vực quan trọng của nền kinh tế và kiểm soát dịch hại là một phần không thể thiếu trong quá trình này. Một nhóm các nhà khoa học từ Viện nghiên cứu khoai tây trung tâm-Hội đồng nghiên cứu nông nghiệp Ấn Độ (ICAR-CPRI), Shimla, đã đưa ra một giải pháp sáng tạo cho vấn đề này - bẫy không khí côn trùng chạy bằng năng lượng gió. Thiết bị này giải quyết những thiếu sót của các phương pháp kiểm soát sinh vật gây hại truyền thống bằng cách cung cấp dữ liệu về số lượng côn trùng theo thời gian thực. Bẫy được cung cấp năng lượng hoàn toàn bằng năng lượng gió, khiến nó trở thành một giải pháp thân thiện với môi trường và không cần điện. Thiết kế độc đáo của nó cho phép giám sát cả côn trùng có hại và có ích, cung cấp cái nhìn tổng quan đầy đủ về quần thể ở bất kỳ khu vực nông nghiệp nào. Kapil cho biết: “Bằng cách đánh giá các loài gây hại mục tiêu vào đúng thời điểm, chúng tôi có thể thực hiện các biện pháp cần thiết để kiểm soát cả sâu bệnh và dịch bệnh”. ... >>

Mối đe dọa của rác vũ trụ đối với từ trường Trái đất 01.05.2024

Chúng ta ngày càng thường xuyên nghe về sự gia tăng số lượng mảnh vụn không gian xung quanh hành tinh của chúng ta. Tuy nhiên, không chỉ các vệ tinh và tàu vũ trụ đang hoạt động góp phần gây ra vấn đề này mà còn có các mảnh vụn từ các sứ mệnh cũ. Số lượng vệ tinh ngày càng tăng do các công ty như SpaceX phóng không chỉ tạo ra cơ hội cho sự phát triển của Internet mà còn là mối đe dọa nghiêm trọng đối với an ninh không gian. Các chuyên gia hiện đang chuyển sự chú ý của họ sang những tác động tiềm ẩn đối với từ trường Trái đất. Tiến sĩ Jonathan McDowell thuộc Trung tâm Vật lý thiên văn Harvard-Smithsonian nhấn mạnh rằng các công ty đang nhanh chóng triển khai các chòm sao vệ tinh và số lượng vệ tinh có thể tăng lên 100 trong thập kỷ tới. Sự phát triển nhanh chóng của các đội vệ tinh vũ trụ này có thể dẫn đến ô nhiễm môi trường plasma của Trái đất với các mảnh vụn nguy hiểm và là mối đe dọa đối với sự ổn định của từ quyển. Các mảnh vụn kim loại từ tên lửa đã qua sử dụng có thể phá vỡ tầng điện ly và từ quyển. Cả hai hệ thống này đều đóng vai trò quan trọng trong việc bảo vệ bầu không khí và duy trì ... >>

Sự đông đặc của các chất số lượng lớn 30.04.2024

Có khá nhiều điều bí ẩn trong thế giới khoa học, và một trong số đó là hành vi kỳ lạ của vật liệu khối. Chúng có thể hoạt động như chất rắn nhưng đột nhiên biến thành chất lỏng chảy. Hiện tượng này đã thu hút sự chú ý của nhiều nhà nghiên cứu và cuối cùng chúng ta có thể đang tiến gần hơn đến việc giải đáp bí ẩn này. Hãy tưởng tượng cát trong một chiếc đồng hồ cát. Nó thường chảy tự do, nhưng trong một số trường hợp, các hạt của nó bắt đầu bị kẹt, chuyển từ chất lỏng sang chất rắn. Quá trình chuyển đổi này có ý nghĩa quan trọng đối với nhiều lĩnh vực, từ sản xuất thuốc đến xây dựng. Các nhà nghiên cứu từ Hoa Kỳ đã cố gắng mô tả hiện tượng này và tiến gần hơn đến việc hiểu nó. Trong nghiên cứu, các nhà khoa học đã tiến hành mô phỏng trong phòng thí nghiệm bằng cách sử dụng dữ liệu từ các túi hạt polystyrene. Họ phát hiện ra rằng các rung động trong các bộ này có tần số cụ thể, nghĩa là chỉ một số loại rung động nhất định mới có thể truyền qua vật liệu. Đã nhận ... >>

Tin tức ngẫu nhiên từ Kho lưu trữ

Trong ruột của Trái đất, helium sẽ giúp giữ sắt và oxy 28.12.2018

Một nhóm các nhà khoa học quốc tế đã tiến hành một nghiên cứu cho thấy sau vụ nổ Big Bang, rất nhiều heli được hình thành trong ruột hành tinh của chúng ta. Chính nguyên tố này giúp giữ lại sắt và oxy.

Các nhà nghiên cứu từ Trung Quốc và Hoa Kỳ, sau khi tiến hành các thí nghiệm thực địa, đã mô hình hóa một mô hình máy tính của hành tinh chúng ta, cho thấy sắt và oxy được giữ lại trong ruột của Trái đất với sự trợ giúp của helium sơ cấp.

Từ lâu, các chuyên gia đã khẳng định rằng heli là nguyên tố hóa học phổ biến thứ hai sau hydro, và có một lượng lớn chất này lắng đọng trong ruột của Trái đất. Đến nay, người ta đã chứng minh rằng nó được lưu trữ trong vỏ cây ở dạng hợp chất FeO2He, hợp chất này có khả năng phản ứng với oxit sắt. Sự tương tác này dẫn đến sự hình thành một hợp chất có thể vẫn ổn định ngay cả khi được nung nóng đến nhiệt độ bốn nghìn độ C và duy trì ở áp suất 135-300 gigapascal.

Người ta cho rằng heli nằm ở ranh giới giữa lớp phủ của Trái đất và lõi của nó. Các nhà nghiên cứu đã đưa ra kết luận này sau khi tiến hành mô phỏng máy tính bằng thuật toán CALYPSO. Hợp chất này vẫn chưa được thu được trong phòng thí nghiệm, nhưng các nhà khoa học đã có thể tổng hợp chất tương tự của nó.

Tin tức thú vị khác:

▪ USB Type-C đã trở thành bộ sạc điện thoại thông minh tiêu chuẩn ở Châu Âu

▪ Sản xuất nhiên liệu hàng không không năng suất

▪ Đã tạo ra mô hình ảo lớn nhất của vũ trụ

▪ Nuôi cấy tế bào gốc trên ISS

▪ In 3D với các vật liệu có màu sắc và đặc tính khác nhau

Nguồn cấp tin tức khoa học và công nghệ, điện tử mới

 

Tài liệu thú vị của Thư viện kỹ thuật miễn phí:

▪ phần trang web Các chỉ số, cảm biến, máy dò. Lựa chọn bài viết

▪ bài viết Một mặt tốt cho một trò chơi xấu. biểu thức phổ biến

▪ bài viết Thềm lục địa là gì? đáp án chi tiết

▪ bài báo Pansies. Truyền thuyết, canh tác, phương pháp áp dụng

▪ bài viết Mẹo Chăm Sóc Đồ Điện Gia Dụng và Hệ Thống Dây Điện. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

▪ Bài báo Stroboscope. thí nghiệm vật lý

Để lại bình luận của bạn về bài viết này:

Имя:


Email (tùy chọn):


bình luận:





Tất cả các ngôn ngữ của trang này

Trang chủ | Thư viện | bài viết | Sơ đồ trang web | Đánh giá trang web

www.diagram.com.ua

www.diagram.com.ua
2000-2024