Menu English Ukrainian Tiếng Nga Trang Chủ

Thư viện kỹ thuật miễn phí cho những người có sở thích và chuyên gia Thư viện kỹ thuật miễn phí


ENCYCLOPEDIA VỀ ĐIỆN TỬ TRUYỀN THANH VÀ KỸ THUẬT ĐIỆN
Thư viện miễn phí / Sơ đồ của các thiết bị vô tuyến-điện tử và điện

năng lượng trái đất. Máy bơm nhiệt. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

Thư viện kỹ thuật miễn phí

Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện / Nguồn năng lượng thay thế

Bình luận bài viết Bình luận bài viết

Полтора века назад британский физик Уильям Томсон придумал устройство под названием "умножитель тепла", основанное на следующих физических явлениях:

  • вещество затрачивает энергию при испарении и отдает энергию при конденсации;
  • температура кипения вещества изменяется вместе с давлением.

В результате и появился bơm nhiệt - устройство для переноса тепловой энергии от источника с более низкой температурой к источнику с более высокой температурой, фактически - это холодильник с источником более низкой температуры во внешней среде или кондиционер, работающий на нагрев.

Принцип работы теплового насоса основан на том, что хладагент испаряется в камере с низким давлением и температурой и конденсируется в камере с высоким давлением и температурой, осуществляя таким образом перенос энергии (тепла) от холодного тела к нагретому, то есть в направлении, в котором самопроизвольный теплообмен невозможен.

В качестве низкопотенциального источника тепловой энергии для обогрева дома может быть использовано тепло естественного происхождения (наружный воздух; тепло грунтовых, артезианских и термальных вод; воды рек. озер. морей и других незамерзающих природных водоемов). Тепловые насосы комплектуются системой управления и автоматики, которая поддерживает заданный режим работы теплового насоса.

Энергетическая эффективность применения тепловых насосов зависит от температуры низкопотенциального источника и будет тем выше, чем более высокую температуру он будет иметь

Тепловые насосы не относятся к дешевому оборудованию. Начальные затраты на установку этих систем несколько выше стоимости обычных систем отопления и кондиционирования. Однако, если рассматривать эксплуатационные расходы. то первоначальные вложения в геотермальный обогрев, охлаждение и горячее водоснабжение быстро окупаются за счет энергосбережения. Кроме того, необходимо учитывать, что при работе теплового насоса не требуется никаких дополнительных коммуникаций, кроме бытовой электрической сети.

Производительность теплового насоса (отношение количества теплоты, переданной телу, к затраченной работе) в идеальном случае равна:

а = Т вых / (Т вых - Т вх.),

где Т вых. и T вх. - температуры, соответственно, на выходе и на входе насоса.

Устройство теплового насоса

Основными элементами теплового насоса являются соединенные трубопроводом испаритель, компрессор, конденсатор и регулятор потока - дроссель, детандер или вихревая труба. Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (теплоноситель, собирающий теплоту окружающей среды), во втором - вещество, которое испаряется, отбирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику, в третьем - теплоприемник (вода в системах отопления и горячего водоснабжения здания).

Năng lượng trái đất. Máy bơm nhiệt
Рис.1. Схема работы теплового насоса: 1 - теплообменники в скважинах (система теплосбора); 2 - контур незамерзающего теплоносителя (тосол); 3 - тепловой насос; 4 - контур отопительной воды

Внешний контур (коллектор) представляет собой уложенный в землю или в воду (напр., полиэтиленовый) трубопровод, в котором циркулирует незамерзающая жидкость - антифриз. Источником низкопотенциального тепла может служить грунт, скальная порода, озеро, река, море и даже выход теплого воздуха из системы вентиляции какого-либо промышленного предприятия.

Во второй контур, где циркулирует хладагент, как и в бытовом холодильнике, встроены теплообменники - испаритель и конденсатор, а также устройства, которые меняют давление хладагента - распыляющий его в жидкой фазе дроссель (узкое калиброванное отверстие) и сжимающий его уже в газообразном состоянии компрессор.

Конструкции геотермальных насосов

При работе этих систем используется возобновляемое тепло солнечного излучения, которое накоплено в земле:

  • насос с открытым циклом (теплоноситель подается непосредственно из водоема и после прохождения цикла охлажденным возвращается обратно);
  • насос с закрытым циклом (теплоноситель прокачивается через замкнутый контур, который может быть проложен глубоко в земле или по дну водоема. Это более экологически безопасный метод, чем открытый цикл);
  • насос с горизонтальным теплообменником (замкнутый контур теплообменника укладывается горизонтально в глубокие траншеи);
  • насос с вертикальным теплообменником (замкнутый контур теплообменника устанавливается вертикально в подготовленные отверстия. Применяется в тяжелом грунте или при ограниченности пространства участка. Наиболее эффективным считается тепловой насос с замкнутым циклом: теплоноситель прокачивается через замкнутый контур, который может быть проложен глубоко в земле или по дну водоема).

Рабочий цикл теплового насоса

Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды. Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель После этого рабочий цикл начинается сначала.

Эффективность теплового насоса

В процессе работы компрессор затрачивает электроэнергию. На каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5-5 киловатт-часов тепловой энергии. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса.

Отличие теплового насоса от топливных источников тепла состоит в том, что для работы, кроме энергии для компрессора, ему нужен также источник низкопотенциального тепла, в то время как в традиционных источниках тепла вырабатываемое тепло зависит исключительно от теплотворной способности топлива.

Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу, может быть решена введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.

Условный КПД тепловых насосов

Тепловой насос способен, используя высокопотенциальные источники энергии, "накачать" в помещение (в процентах от затраченной) от 200% до 600% низкопотенциальной тепловой энергии. В этом нет нарушения закона сохранения энергии, так как при этом охлаждается окружающая среда.

Теоретически применение тепловых насосов для обогрева помещений эффективнее газовых котлов. Современные парогазотурбинные установки на электростанциях имеют КПД незначительно меньший КПД газовых котлов. В результате при переходе электроэнергетики на современное оборудование и при применении тепловых насосов можно получить экономию газа до 3-5 раз в сравнении с газовыми котлами. В действительности приходится учитывать накладные расходы по передаче, преобразованию и распределению электроэнергии (т. е. услуги энергосетей). В результате отпускная цена электричества в 3-5 раз превышает его себестоимость, что сводит на нет применение в общем-то прогрессивной технологии. В связи с этим, целесообразно использовать электричество от альтернативных источников (волновые, ветровые, солнечные электростанции) или комбинировать генерацию электричества из газа с использованием его здесь же на месте, для получения тепла в тепловом насосе.

Рекомендации по эксплуатации теплового насоса

  • При использовании в качестве источника тепла энергии гранта трубопровод, в котором циркулирует антифриз, зарывают в землю на 30-50 см ниже уровня промерзания грунта в данном регионе. Минимальное рекомендуемое расстояние между трубами коллектора - 0,8 1 м. Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощности, приходящейся на l м трубопровода - 20-30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350-450 м для укладки которого потребуется участок земли площадью около 400 м2 (20x20 м). При правильном расчете контур не влияет на зеленые насаждения.
  • Если свободного участка для прокладки коллектора нет или в качестве источника тепла используется скалистая порода, трубопровод опускается в скважину. Не обязательно использовать одну глубокую скважину - можно пробурить несколько неглубоких, более дешевых, чтобы получить общую расчетную глубину. Иногда в качестве скважин используют фундаментные сваи.
  • Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой энергии. Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной 170 м.
  • Хладагент подается непосредственно к источнику земного типа, что обеспечивает высокую эффективность геотермальной отопительной системы. Испаритель устанавливают в фунт горизонтально ниже глубины промерзания или в скважины диаметром 40-60 мм, пробуренные вертикально либо под уклоном до глубины 15-30 м. Благодаря такому инженерному решению устройство теплообменного контура производится на площади всего нескольких квадратных метров, не требует установки промежуточного теплобменника и дополнительных затрат на работу циркуляционного насоса.
  • При использовании в качестве источника тепла близлежащего водоема контур укладывается на дно. Этот вариант принято считать идеальным не слишком длинный внешний контур высокая температура окружающей среды (температура воды в водоеме зимой всегда плюсовая; высокий коэффициент преобразования энергии тепловым насосов).
  • Ориентировочное значение тепловой мощности на 1 м трубопровода - 30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза
  • Для получения тепла из теплого воздуха (например, из вытяжки системы вентиляции) используется специальная модель теплового насоса с воздушным теплообменником. Тепло из воздуха для системы отопления и горячего водоснабжения также можно собирать на производственных предприятиях.
  • Если тепла из внешнего контура все же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления). Когда уличная температура опускается ниже расчетного уровня (температуры бивалечтности в работу включается второй генератор тепла - чаще всего небольшой электронагреватель.

Преимущества и недостатки теплового насоса

К преимуществам тепловых насосов в первую очередь следует отнести экономность: для передачи в систему отопления I кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Так как преобразование тепловой энергии в электрическую на крупных электростанциях происходит с КПД до 50%, эффективность использования топлива при применении тепловых насосов повышается. Упрощаются требования к системам вентиляции помещений и повышается уровень пожарной безопасности. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.

Еще одним преимушеством тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы.

Тепловой насос надежен, его работой управляет автоматика. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют особых навыков и описаны в инструкции.

Важной особенностью системы является ее сугубо индивидуальный характер для каждого потребителя, который заключается в оптимальном выборе стабильного источника низкопотенциальной энергии, расчете коэффициента преобразования, окупаемости и прочего.

Теплонасос компактен (его модуль по размерам не превышает обычный холодильник) и практически бесшумен.

К недостаткам тепловых насосов, используемых для отопления, следует отнести большую стоимость установленного оборудования.

Xem các bài viết khác razdela Nguồn năng lượng thay thế.

Đọc và viết hữu ích bình luận về bài viết này.

<< Quay lại

Tin tức khoa học công nghệ, điện tử mới nhất:

Tiếng ồn giao thông làm chậm sự phát triển của gà con 06.05.2024

Những âm thanh xung quanh chúng ta ở các thành phố hiện đại ngày càng trở nên chói tai. Tuy nhiên, ít người nghĩ đến việc tiếng ồn này ảnh hưởng như thế nào đến thế giới động vật, đặc biệt là những sinh vật mỏng manh như gà con chưa nở từ trứng. Nghiên cứu gần đây đang làm sáng tỏ vấn đề này, cho thấy những hậu quả nghiêm trọng đối với sự phát triển và sinh tồn của chúng. Các nhà khoa học đã phát hiện ra rằng việc gà con ngựa vằn lưng kim cương tiếp xúc với tiếng ồn giao thông có thể gây ra sự gián đoạn nghiêm trọng cho sự phát triển của chúng. Các thí nghiệm đã chỉ ra rằng ô nhiễm tiếng ồn có thể làm chậm đáng kể quá trình nở của chúng và những gà con nở ra phải đối mặt với một số vấn đề về sức khỏe. Các nhà nghiên cứu cũng phát hiện ra rằng những tác động tiêu cực của ô nhiễm tiếng ồn còn ảnh hưởng đến chim trưởng thành. Giảm cơ hội sinh sản và giảm khả năng sinh sản cho thấy những ảnh hưởng lâu dài mà tiếng ồn giao thông gây ra đối với động vật hoang dã. Kết quả nghiên cứu nêu bật sự cần thiết ... >>

Loa không dây Samsung Music Frame HW-LS60D 06.05.2024

Trong thế giới công nghệ âm thanh hiện đại, các nhà sản xuất không chỉ nỗ lực đạt được chất lượng âm thanh hoàn hảo mà còn kết hợp chức năng với tính thẩm mỹ. Một trong những bước cải tiến mới nhất theo hướng này là hệ thống loa không dây Samsung Music Frame HW-LS60D mới, được giới thiệu tại sự kiện Thế giới Samsung 2024. Samsung HW-LS60D không chỉ là một chiếc loa mà còn là nghệ thuật của âm thanh kiểu khung. Sự kết hợp giữa hệ thống 6 loa có hỗ trợ Dolby Atmos và thiết kế khung ảnh đầy phong cách khiến sản phẩm này trở thành sự bổ sung hoàn hảo cho mọi nội thất. Samsung Music Frame mới có các công nghệ tiên tiến bao gồm Âm thanh thích ứng mang đến cuộc hội thoại rõ ràng ở mọi mức âm lượng và tính năng tối ưu hóa phòng tự động để tái tạo âm thanh phong phú. Với sự hỗ trợ cho các kết nối Spotify, Tidal Hi-Fi và Bluetooth 5.2 cũng như tích hợp trợ lý thông minh, chiếc loa này sẵn sàng đáp ứng nhu cầu của bạn. ... >>

Một cách mới để kiểm soát và điều khiển tín hiệu quang 05.05.2024

Thế giới khoa học và công nghệ hiện đại đang phát triển nhanh chóng, hàng ngày các phương pháp và công nghệ mới xuất hiện mở ra những triển vọng mới cho chúng ta trong nhiều lĩnh vực khác nhau. Một trong những đổi mới như vậy là sự phát triển của các nhà khoa học Đức về một phương pháp mới để điều khiển tín hiệu quang học, phương pháp này có thể dẫn đến tiến bộ đáng kể trong lĩnh vực quang tử học. Nghiên cứu gần đây đã cho phép các nhà khoa học Đức tạo ra một tấm sóng có thể điều chỉnh được bên trong ống dẫn sóng silica nung chảy. Phương pháp này dựa trên việc sử dụng lớp tinh thể lỏng, cho phép người ta thay đổi hiệu quả sự phân cực của ánh sáng truyền qua ống dẫn sóng. Bước đột phá công nghệ này mở ra triển vọng mới cho việc phát triển các thiết bị quang tử nhỏ gọn và hiệu quả có khả năng xử lý khối lượng dữ liệu lớn. Việc điều khiển phân cực quang điện được cung cấp bởi phương pháp mới có thể cung cấp cơ sở cho một loại thiết bị quang tử tích hợp mới. Điều này mở ra những cơ hội lớn cho ... >>

Tin tức ngẫu nhiên từ Kho lưu trữ

SMS từ Joulupukki 30.05.2005

Các kỹ sư Phần Lan đã tạo ra một dịch vụ cảnh báo đèn phía Bắc để tạo sự thuận tiện cho khách du lịch.

Ở phía Bắc xa xôi, người ta có thể quan sát hiện tượng thiên nhiên đẹp nhất - những ngọn đèn phía Bắc. Nguyên nhân của nó là các luồng hạt gió mặt trời, theo thời gian trong khu vực các cực phá vỡ các vành đai bức xạ của hành tinh và đến các lớp dày đặc của khí quyển. Ví dụ, ở ngôi làng Rovaniemi của Lapland, nơi ở của ông già Noel Phần Lan, nó diễn ra hầu như hàng ngày từ tháng XNUMX đến tháng XNUMX. Tuy nhiên, không ai có thể đoán được thời gian chính xác, và một du khách tò mò buộc phải nhìn lên bầu trời trong nhiều giờ để không bỏ lỡ cảnh đẹp.

Miikka Raulo, giám đốc Trung tâm chuyên môn về phát triển công nghiệp ở Lapland, cho biết: “Chúng tôi quyết định giúp đỡ mọi người.

Dịch vụ hoạt động như thế này. Khách du lịch có thể đặt dịch vụ qua Internet trước chuyến đi hoặc thuê điện thoại di động tại sân bay. Tại đó, một bộ cảm biến đặc biệt theo dõi sự phát sáng của bầu trời sẽ gửi một tin nhắn văn bản về sự bắt đầu của các ánh sáng phía Bắc.

Tin tức thú vị khác:

▪ Du lịch khinh khí cầu trong tầng bình lưu

▪ Những đứa trẻ này đang ở trong gan của chúng ta

▪ Cảm biến Samsung ISOCELL HP200 3MP

▪ NVIDIA bắt đầu tự lắp ráp một số card màn hình

▪ Chai giấy

Nguồn cấp tin tức khoa học và công nghệ, điện tử mới

 

Tài liệu thú vị của Thư viện kỹ thuật miễn phí:

▪ phần của trang web Hướng dẫn sử dụng. Lựa chọn bài viết

▪ bài viết của Max Stirner. câu cách ngôn nổi tiếng

▪ bài viết Điều gì làm cho kim cương đá quý? đáp án chi tiết

▪ Bài viết Các khái niệm chung về động lực nội tại

▪ bài báo Công tắc optosimistor tải mạnh mẽ. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

▪ bài Định luật nối pin mặt trời. Bách khoa toàn thư về điện tử vô tuyến và kỹ thuật điện

Để lại bình luận của bạn về bài viết này:

Имя:


Email (tùy chọn):


bình luận:





Tất cả các ngôn ngữ của trang này

Trang chủ | Thư viện | bài viết | Sơ đồ trang web | Đánh giá trang web

www.diagram.com.ua

www.diagram.com.ua
2000-2024